Bessel functions

Bessel functions of the first kind, $J_\alpha(x)$, and of the second kind, $Y_\alpha(x)$, are solutions to the Bessel differential equation:

$$ x^2 y'' + x y' + (x^2 - \alpha^2) y = 0 $$

Here, $\alpha$ can be any real or complex number, and $x$ is the independent variable.

1. Domain of $\alpha$:

2. Domain of $x$:

So, in summary:

Properties:

$$ \begin{aligned} J_{\nu} J_{-\nu+1}+J_{-\nu} J_{\nu-1} &=\frac{2 \sin \nu \pi}{\pi x}, \\ J_{\nu} J_{-\nu-1}+J_{-\nu} J_{\nu+1} &=-\frac{2 \sin \nu \pi}{\pi x}, \\ J_{\nu} Y_{\nu}^{\prime}-J_{\nu}^{\prime} Y_{\nu} &=\frac{2}{\pi x}, \\ J_{\nu} Y_{\nu+1}-J_{\nu+1} Y_{\nu} &=-\frac{2}{\pi x} \end{aligned} $$

________________________________________

________________________________________

________________________________________

Author of the notes: Antonio J. Pan-Collantes

antonio.pan@uca.es


INDEX: